1. Explain the following terms. [15pts]
 a) database schema and instance
 schema: the **logical structure** (overall design) of the database
 instance: the actual **content** (information) of the database at a particular point in time
 b) DDL, DML, and query
 DDL: Language for defining the database schema
 DML: Language for accessing and manipulating the data
 Query: part of DML that requests data retrieval
 c) foreign key
 A value in one relation must appear in another relation.

2. Prove or disprove $\Pi_A (r \cap s) = \Pi_A (r) \cap \Pi_A (s)$. [10pts]
 False. A counterexample: $R, S = (A, B), r = \{(a, b)\}, s = \{(a, c)\}$
 $\Pi_A (r \cap s) = \emptyset, \Pi_A (r) \cap \Pi_A (s) = \{a\}$

3. The **anti-join**, written as $r \bowtie s$ where r and s are relations, is similar to the natural join, but its result is only those tuples in r for which there is no tuple in s that is equal on their common attribute names. For example, the result of the anti-join course \bowtieprereq is as follows:

<table>
<thead>
<tr>
<th>course_id</th>
<th>title</th>
<th>dept_name</th>
<th>credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO-301</td>
<td>Genetics</td>
<td>Biology</td>
<td>4</td>
</tr>
<tr>
<td>CS-190</td>
<td>Game Design</td>
<td>Comp. Sci.</td>
<td>4</td>
</tr>
<tr>
<td>CS-315</td>
<td>Robotics</td>
<td>Comp. Sci.</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>course_id</th>
<th>prereq</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO-301</td>
<td>BIO-101</td>
</tr>
<tr>
<td>CS-190</td>
<td>CS-101</td>
</tr>
<tr>
<td>CS-315</td>
<td>CS-101</td>
</tr>
</tbody>
</table>

 a) Define anti-join operation, $r \bowtie s$, in terms of the basic operations and natural join operation. [10pts]
 $r \bowtie = \Pi_{r.a_1, \ldots, r.a_n} (r \setminus r \cap s)$
 b) Find the IDs and titles of courses in the Comp. Sci. department that do not have any prerequisites, using NOT EXISTS clause. [5pts]
 SELECT c.course_id, c.title
 FROM course c
 WHERE NOT EXISTS (SELECT p.course_id
 FROM prereq p
 WHERE c.course_id = p.course_id)
 AND c.dept_name = 'Comp. Sci.';

4. Write a SQL query for the following relational algebra expression: [10pts]
 $\Pi_{\text{dept name}} (\sigma_{\text{salary} > 80000} (\text{instructor}))$
 SELECT DISTINCT dept_name
 FROM instructor
 WHERE salary > 80000;

5. a) What is a **null** value? [2pts]
 An unknown value or that a value does not exist
 b) What is the result for each of the following aggregate functions? [8pts]
 | department | budget | |
|---|---|---|
 | Biology | 80000 |
 | Comp. Sci. | 100000 |
 | Elec. Eng. | 70000 |
 | History | 70000 |
 | Music | Packard | null |
Consider the following database for problem 6 and 7.

\[
\text{movie}(\text{title}, \text{director_name}, \text{running_time}) \\
\text{actor}(\text{title}, \text{actor_name}, \text{role}) \\
\text{theater}(\text{theater_name}, \text{address}, \text{phone}) \\
\text{schedule}(\text{theater_name}, \text{title}, \text{showtime})
\]

6. Give an expression in the relational algebra for each of the following queries: [20pts]
 a) Find the names of actors who appeared in a movie titled “Godfather”.
 \[\pi_{\text{actor_name}}(\sigma_{\text{title} = \text{"Godfather"}}(\text{actor}))\]
 b) Find the names of directors who appeared in their own movie.
 \[\pi_{\text{director_name}}(\sigma_{\text{director_name} = \text{actor_name}}(\text{movie} \bowtie \text{actor}))\]
 c) Find the names of theaters showing a movie which was directed by “Tim Burton” or in which “Johnny Depp” appeared.
 \[\pi_{\text{theater_name}}(\sigma_{\text{director_name} = \text{"Tim Burton"}}(\text{movie} \bowtie \text{schedule})) \cup \pi_{\text{theater_name}}(\sigma_{\text{actor_name} = \text{"Johnny Depp"}}(\text{actor} \bowtie \text{schedule}))\]
 d) Find the names of theaters showing a movie which is not showing in any other theaters, with the titles of the movies.
 \[\pi_{\text{theater_name}, \text{title}}(\text{schedule}) - \pi_{\text{theater_name}, \text{title}}(\sigma_{\text{schedule.theater_name} = \text{theater_name} \land \text{schedule.title} = \text{title}}(\text{schedule} \bowtie s(\text{schedule})))\]

7. Write the following queries in SQL: [20pts]
 a) Find the address and phone number of a theater named ‘Cinecube’.
 \[
 \text{SELECT address, phone} \\
 \text{FROM theater} \\
 \text{WHERE theater_name = \text{"Cinecube"};}
 \]
 b) Find the names of theaters and showtimes for a movie titled ‘Les Miserables’ in ascending order of showtime.
 \[
 \text{SELECT theater_name, showtime} \\
 \text{FROM schedule} \\
 \text{WHERE title = \text{"Les Miserables"} \land showtime_order = \text{ASC};}
 \]
 c) Display the schedules(all attributes of schedule) of all movies in the database in which ‘Brad Pitt’ and ‘Angelina Jolie’ do not appear.
 \[
 \text{SELECT theater_name, title, showtime} \\
 \text{FROM schedule NATURAL JOIN actor} \\
 \text{WHERE actor_name NOT IN (\text{"Brad Pitt"}, \text{"Angelina Jolie"});}
 \]
 d) Display the list of all movie titles, with the total number of showings of each movie. Make sure to correctly handle movies with no showings.
 \[
 \text{SELECT title, count(showtime)} \\
 \text{FROM movie NATURAL LEFT OUTER JOIN schedule} \\
 \text{GROUP BY title}
 \]