1. [10pts] Describe two fundamental differences between the relational algebra and SQL.
 Relational algebra: set-based (no duplicate tuple), procedural language
 SQL: multiset-based (may have duplicate tuples), non-procedural language

2. [5pts] Explain why the following query does not work.
   ```sql
   select dept_name, id, count(name)
   from instructor
   group by dept_name;
   ```
 `id` cannot be used in the `select` clause because `id` is not included in the `group by` expression.

3. [10pts] List five integrity constraints and briefly explain each of them.
 - **not null**: a specified attribute cannot be null
 - **unique**: values for specified attributes must be unique or null
 - **primary key**: values for specified attributes must be unique and not null
 - **check**: tuples must meet a given predicate
 - **foreign key**: a value that appears in one relation for a given set of attributes also appears for a certain set of attributes in another relation

4. a) [5pts] What is the difference between a relation and a view?
 A view definition causes the saving of an expression; the expression is substituted into queries using the view.
 b) [5pts] Describe three advantages of using a view that joins two relations, against creating another relation that joins two relations.
 - Certain data can be hidden from the view of certain users.
 - No additional space overhead
 - Data modifications (insert/delete/update) are needed only for the underlying relations.

5. a) [5pts] Explain two major pitfalls to avoid in designing a database schema.
 - Redundancy: repeating information may cause data inconsistency
 - Incompleteness: it is difficult or impossible to model certain aspects of the enterprise
 b) [5pts] Describe pros and cons of database normalization.
 - Pros: we can reduce data redundancy without loss of information.
 - Cons: more join operations between multiple tables are needed for data retrieval.
 c) [5pts] Why do we sometimes need to denormalize a database schema instead of avoiding the pitfalls?
 We may want to use non-normalized schema for performance, for example, to reduce join operations between multiple relations.

6. [5pts: 1pt each / 0pt for no answer / -1pt for a wrong answer]
 Consider the relation r below. Which of the following FDs does r satisfy?
 Choose TRUE or FALSE for each FD.

 | a) A → D | FALSE |
 | b) AB → D | TRUE |
 | c) C → BDE | TRUE |
 | d) E → A | FALSE |
 | e) A → E | TRUE |
   ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>a₁</td>
<td>b₁</td>
<td>c₁</td>
<td>d₁</td>
<td>e₁</td>
</tr>
<tr>
<td>a₁</td>
<td>b₂</td>
<td>c₂</td>
<td>d₂</td>
<td>e₁</td>
</tr>
<tr>
<td>a₂</td>
<td>b₁</td>
<td>c₃</td>
<td>d₃</td>
<td>e₁</td>
</tr>
<tr>
<td>a₂</td>
<td>b₁</td>
<td>c₄</td>
<td>d₃</td>
<td>e₁</td>
</tr>
<tr>
<td>a₃</td>
<td>b₂</td>
<td>c₃</td>
<td>d₁</td>
<td>e₁</td>
</tr>
</tbody>
</table>
7. a) [10pts] Construct an E-R diagram for the following description.

Design a database for the reservation office of a bus company.
- Each bus has a unique number. We also store its class and capacity.
- Each place has a unique name and location information of the latitude and longitude.
- Routes have a starting place and an ending place; also, some of them have several intermediate places.
- A number of buses are scheduled to a route. A bus is assigned to one schedule; some buses can have multiple schedules. We store the date and starting time of each schedule.
- A member of our company can book a bus by specifying a schedule. We store a unique id, first name, and last name of each member.
- For each reservation, credit card number, the number of passengers, and the reservation datetime are stored.

b) [10pts] Convert your E-R diagram into a relational schema.

place(name, latitude, longitude)
route(route#)
starting_place(route#, name)
ending_place(route#, name)
intermediate_place(route#, name)
schedule(route#, day, starting_time)
bus(bus#, class, capacity)
assignment(route#, day, starting_time, bus#)
member(id, first_name, last_name)
reservation(id, route#, day, starting_time, credit_card#, passengers, reserve_datetime)
8. Let \( F = \{ AB \rightarrow C, B \rightarrow D, CD \rightarrow E, CE \rightarrow GH \} \).

Give a derivation sequence on \( F \) for the following FDs using only Armstrong's axioms.

a) [5pts] \( AB \rightarrow E \)
   - \( AB \rightarrow ABD \) (augmentation: \( B \rightarrow D \) with \( AB \))
   - \( ABD \rightarrow CD \) (augmentation: \( AB \rightarrow C \) with \( D \))
   - \( AB \rightarrow CD \) (transitivity: \( AB \rightarrow ABD \) and \( ABD \rightarrow CD \))
   - \( AB \rightarrow E \) (transitivity: \( AB \rightarrow CD \) and \( CD \rightarrow E \))

b) [5pts] \( AB \rightarrow G \)
   - \( AB \rightarrow ABE \) (augmentation: \( AB \rightarrow E \) with \( AB \))
   - \( ABE \rightarrow CE \) (augmentation: \( AB \rightarrow C \) with \( E \))
   - \( AB \rightarrow CE \) (transitivity: \( AB \rightarrow ABE \) and \( ABE \rightarrow CE \))
   - \( AB \rightarrow GH \) (transitivity: \( AB \rightarrow CE \) and \( CE \rightarrow GH \))
   - \( GH \rightarrow G \) (reflexivity)
   - \( AB \rightarrow G \) (transitivity: \( AB \rightarrow GH \) and \( GH \rightarrow G \))

9. Let \( F \) be the set of functional dependencies on relation schema \( R (A, B, C, D, E, F) \).
   
   \[ F = \{ A \rightarrow B, C \rightarrow D, AC \rightarrow E, D \rightarrow F \} \]

a) [5pts] Find all candidate keys for the relation schema \( R \).
   - Since \( AC \rightarrow ABCDEF \), \( AC \) is a superkey.
   - \( A \) and \( C \) must be in any candidate key since they do not appear on the right of any FD.
   - Hence, \( AC \) is the only candidate key.

b) [5pts] Give a lossless-join decomposition of \( R \) into BCNF.
   - \( R1(A, B), R2(C, D), R3(A, C, E), R4(C, F) \)
   - or \( R1(A, B), R2(C, D), R3(A, C, E), R4(D, F) \)

c) [5pts] Give a decomposition of \( R \) into 3NF, having a lossless-join and preserving dependencies.
   - Is your decomposition in BCNF?
   - \( R1(A, B), R2(C, D), R3(A, C, E), R4(D, F) \)
   - The answer is in BCNF.